中国海光

第13卷 第5期

半导体激光器参数综合测量法及其应用

肖宗耀 陈莲勇 忻慧芳

(中国科学院上海冶金研究所)

提要:本文描述一种激光器参数综合测量方法和实验装置,不需移动待测样品, 能测量光强-电流特性、近场和远场、激射光谱等激光器参数,以及对器件的结构、发 光位置、腔面完整性等进行观察。

A comprehensive measurement method of parameters for semiconductor lasers and its application

Xiao Zongyao, Chen Lianyong, Xin Huifang (Shanghai Institute of Metallurgy, Academia Sinica)

Abstract: In this paper, we describe a comprehensive measurement method of major parameters for semiconductor lasers. It has been used to measure threshold current, light output power. L-I characteristics, near-field and far-field distribution., lasing spectrum, structure and luminous position of devices can be measured and observed without moving the measured samples.

一、引言

半导体激光器在现代光电技术中是十分 重要的关键性器件,广泛应用于光纤通讯、光 盘记录、激光测距等领域。为了研制性能优良 的激光器,必须对激光器的激射模式和重要 参数,如阈值、光功率、光强-电流的关系、近 场、远场分布、激射光谱以及器件的结构和发 光位置等进行测量研究。使人们对器件的质 量有比较全面的了解。过去,对这些重要参数 的测量大都是分开的,个别地进行测量,难免 因环境和测量条件变动带来的影响。由于激 光器的物理特性对温度和驱动电流很敏感, 环境温度和驱动电流的变化会使激光模式呈 现各种复杂变化。因而环境和测量条件的变 动往往影响到测试结果的重复性和一致性。 而且在测量激光器的近场时,不能同时知道 对应的纵模光谱如何;在测量纵模光谱时,又 不能同时知道当时与之对应的近场是基横 模,还是高阶横模,抑或是多丝激射。为了要 了解激光器工作模式的变化,有必要把近场 图样、近场光强分布和纵模光谱对应起来,同 时进行测量。其次,几个重要参数分开进行 测量还会带来测试设备分散、利用效率低、多 次拆装搬动,容易使激光器受到人为损伤,特 别对未封装的激光器管芯,更加容易被损坏。 这些缺点对激光器的研究和批量测试将带来 严重的影响。针对上述存在的缺点,我们建立

收稿日期:1984年8月6日。

了(GaAl)As和InGaAsP双异质结半导体激 光器参数的综合测量方法,并建立了一套实 用的激光参数综合测量装置。应用"参数综合 测量法",测量时不需移动待测样品,就能完 成激光器多种重要参数的测量。特别适用于 测量未封装的激光器管芯。

二、实验装置

半导体激光器参数综合测试装置由红外 显微电视—光纤扫描机构—光栅光谱仪系 统组合而成。该装置的结构框图示于图 1。

工作原理简述如下。把待测的激光器或 激光器管芯安装在座架中,然后置于显微镜 的载物台上,给激光器加上驱动电流,激光器 的发射光束通过显微镜的物镜投射至分光束 镜,分成水平、垂直两路光束。水平反射光束 通过 ZA 转接镜、滤色镜投射到硅靶摄象机 的靶面上,然后被转换成电视图象,于是在电 视监示器上就显示出激光器的近场图样。同 时由选行扫描显示单元在示波器上显示出由 监示器上亮线所指一行的近场光强分布波 形。垂直透射光束射到直角棱镜面上成象,该 象与监示器上的图象一致,并可按需要被放 大180、120、60或10倍四级,由直角棱镜到 目镜的高度决定。使用光纤的一端对准棱镜 面上的象,进行光耦合,另一端对准探测器可 进行近场或远场扫描,或者连接到光栅光谱 仪的进光狭缝,可进行纵模光谱测量。如果 用大面积 Si-PIN 或 InGaAs 探测器代 替显 微镜的物镜,可分别作(GaA1)As、InGaAsP 激光器的光强-电流特性图示测量。

三、测量方法和结果

我们进行了短波长 (GaAl)As DH 激光器、集成激光器和长波长 InGaAsP 激光器以及这二类激光器的管芯进行红外透射观察;脉冲 L-I特性图示;近场、远场图样和光强分布显示;近场、远场扫描和与近场相对应的激射总光谱、分光谱的测量。

1. 红外透射技术

近年来, 红外透射技术已发展成为观察 发光器件的结构、发光位置和暗缺陷等的有 力手段^[2~8]。我们用大功率的 GaAs 发光二极 管作为红外透射光源, 获得了比用白炽灯光 源更加清晰的透射图象, 如图 2 的沟道衬底 (GaA1)As 激光器的透视照片。图 2(*a*)表明: 加电流时,发光位置不在沟里,而是偏到沟道 两旁的肩膀。图 2(*b*)是一只沟道衬底集成激 光器的透视照片,沟道轮廓清晰,发光和受激 发射的位置都在沟道里, 测得沟宽~13 μm, 沟深 ~5 μm。

2. 光强-电流特性图示测量

在半导体激光器的光强-电流特性图示测量^[4]的基础上,在SR-32示波器的Z轴加

图 2 半导体激光器管芯的红外透射照片

一同步矩形负脉冲,作为加亮脉冲。脉冲幅度 ≥20 V, 宽度为驱动激光器的三角波电流脉 冲底宽的一半。这样可使 L-I 特性曲线的显 示更明亮清晰。测量时,不需移动激光器,只 要转动物镜转换器,用大面积Si-PIN探测器 取代显微镜物镜,对准激光器发光区,接受发 射光功率。对长波长激光器,改用 InGaAs 探 测器接受光功率。图 3 为几只典型(GaAl)As DH 激光器、集成激光器和 InGaAsP DH 激 光器的 L-I 特性的曲线照片, 从中可直观地 读出激光器的阈值电流和光功率值。此外,从 图示的曲线还可以快速观察到器件的L-I特 性是否有扭折。根据 L-I 特性确定近场、远 场和光谱的实验测试点的电流值 I1, I2 ·····。 然后依次逐点测量激光器的近场、远场和与 近场对应的光谱。从而可以研究近场-光谱随 电流的变化情况, 探讨 L-I 曲线发生扭折时 对激光器模式的影响。

3. 近场和远场分布的测量

激光器的近场图样和近场扫描分布曲线 可以提供激光器的激射横模、发光均匀性、发 光区的大小等信息。实验时调节显微镜载物 台,使激光器的发光表面在物镜焦平面上。根

(a) (GaAl)As DH激光器 纵标 P:1.4mW/div 横标 I:50mA/di▼

(b) (GaAl)As 沟道衬底集成激光器 纵标 P:1.4mW/div 横标 I:125mA/div

(c) (GaAl)As 平面条形集成激光器 纵标 P: 2.8 mW/div 横标 I: 100 mA/div

(d) InGaAs PDH 激光器
纵标 P:0.8 mW/div 横标 I:100 mA/div
图 3 半导体激光器的脉冲 L-I 特性照片

据由 L-I 特性曲线所确定的实验电流值 I₁、 I₂……依次驱动激光器工作,便在电视监示 器上呈现一幅相应的近场图样,在示波器上 显示出由监示器上亮线所指一行的近场光强 分布波形。与此同时,在垂直方向的直角棱 镜面上也有与监示器上近场图样一致的光斑 图象。视光斑大小和多光斑的间距, 光斑图 象可被放大180、120或60倍。使用芯径为 200 µm 的光纤对准棱镜面上的发光光斑,把 光信号耦合到探测器,用锁相放大器把接收 到的信号放大,并输出给 X-Y 记录仪的 Y 轴。光纤由机械装置带动在水平方向匀速扫 描, 走速2mm/分, 并由电位器把光纤的位 移量转换成电压量送给 X-Y 记录仪的X轴, 这样便可在记录仪的同一座标上描绘出不同 电流 I1、I2 ······时的近场扫描分布曲线。图 4(b) 是激光器 #D-2 从 140 mA 至 200 mA 电流时的近场扫描分布曲线。图4(c)、(d) 是对应于170mA 电流时的近场图样和近场 光强分布波形。从近场分布曲线读得光强为 - 时光斑的水平尺寸为~16 µm。二个光斑 的峰相距~8µm。二次重复实验,误差约

(a) L-I 特性曲线 纵标 P:3.4mW/div 横标 I:50mA/div

图 4 激光器 *D-2 的脉冲 L-I 关系、 近场分布和 170 mA 电流时的模式特性

5%。图 5(a)、(b) 是长波长 InGaAsP 激光 器管芯 *J-17 的近场图样和近场分布曲线。

激光器的空间发散角直接影响到光纤的 耦合效率。发散角小的,耦合效率高;发散角 大的,耦合效率就低。远场扫描分布曲线可 为人们提供激光光束空间发散角的信息,也 是衡量激光器性能的重要参数之一。在近场 测量的基础上,把激光器的发光表面调离物 镜的焦平面,距离0.4mm。于是在原来焦平 面上得到的是发散了的光斑,水平方向的光 强分布代表平行于结平面的远场,垂直方向 的光强分布代表垂直于结平面的远场。经光 学放大后投射到直角棱镜面上成象,但是要 注意,发散了的光斑应该全部落在物镜的视 场之内。与近场扫描相似,用光纤对准棱镜 面上的光斑,沿水平方向匀速扫描,获得平行 于结平面的远场分布,随后将激光器旋转90°

图 5

图 6 激光器 *D-2 的远场图样、(a)平行结平 面的远场分布(b)及垂直结平面的远场分布(c)

角,再进行光纤扫描,获得垂直于结平面的远场分布。我们称之为远场平面分布测量。图 6表示激光器 *D-2 的远场图样和远场分布 曲线。*D-2 的 θ_{I} \simeq 10°, θ_{\perp} \simeq 17°。

4. 纵模光谱与对应横模近场同时测量

纵模光谱受近场分布的影响,因此在测 量纵模光谱时,把它与近场光强分布对应起 来,同时地进行测量,可以了解纵模如何随横 模变化。前面已经提到,激光器的发射光束 通过分光束镜被分成水平、垂直两路光束。水 平光束通过摄象机在电视监示器上显示激光 器的近场光强分布;垂直光束在直角棱镜面 上成象,通过光纤耦合进行纵模光谱的测量。 我们对激光器纵模光谱的测量分下面二种情 况:i)对于近场图样是单个光斑的激光器,把 棱镜面上光斑的象聚到最小(象放大 10 倍), 然后用光纤的一头对光耦合,另一头连接到 光栅光谱仪的进光狭缝上, 依次在已确定的 电流 I₁、I₂……测量纵模光谱, 这些纵模光谱 是与电流 I₁、I₂……时的近场图样和近场光 强分布相对应的, 如果在电流 I₁ 下测得纵模 光谱后, 保持电流 I₁和其它实验条件不变, 接着进行近场扫描, 则纵模光谱与近场扫描 分布曲线也是相对应的。ii)对于近场图样是 多光斑的激光器, 除了测定总光谱之外, 还可 以测定对应于每个光斑的分光谱。多光斑总 光谱的测量与上述单个光斑光谱的测量 相 同。分光谱的测量是在测得总光谱之后, 把 直角棱镜座升高, 使棱镜面上光斑的象放大 120倍,甚至180倍,以便把各个光斑分辨开 来,然后用光纤自左至右对准逐个光斑的峰 值位置,进行光耦合和光谱测量,获得与每个 光斑相对应的分光谱。以此为依据,可判别激 光器是高阶横模,还是多光丝激射,为激光器 模式研究提供实验证据。图4(c)~(g)是激光 器 *D-2 在 170 mA 电流时的横模近场、近场 光强分布波形和相对应的激射总光谱、分光 谱。图 5 是长波长 InGaAsP激光器 *J-17 的 横模近场和对应的激射光谱。图 7 表示集成 (GaA1)As 激光器 *8-12-12 的近场--光谱随 电流变化的情况。

8-12-12 A. 876.7

(b) $I = 240 \, \text{mA}$

图7 集成激光器 S-12-12 的近场图样、近场光强分布波形和对应光谱随电流的变化

四、应 用

1. 我们用"激光器参数综合测量法"对 (GaAl)As DH激光器、集成激光器、In GaAsP 长波长激光器以及管芯进行了综合测量和 模式特性的研究。图4表示一个典型的例子 ——激光器 *D-2 的模式特性。由图4可见 它的阈值电流为120mA,在扭折点之前,近 场图样有二个匀称的光斑,它在170mA电 流时的总光谱是单纵模,波长 λ 为800.5 nm, A_1 和 A_2 光斑的分光谱也都是波长 $\lambda_1 = \lambda_2 =$ 800.5 nm的单纵模,它们是同一个光场在谐 振腔里纵向空间上的分布,因此,可以认为 *D-2的激射模式是一次高阶横模,即H₀₁模。 图 7 表示集成激光器 *8-12-12 的近场-光谱 随电流变化的情况,当电流为200mA时,激 光器是以基横模、单纵模工作,激射波长为 876.7 nm。随电流增加到240mA,横模产 生了变化,出现双光丝激射。

2. 可首先观察器件的结构、发光位置和 腔面完整性,再根据参数综合测量结果,挑选 出阈值低、*L-I*线性好、模式特性好的管芯进 行压焊装管。既能保证成品激光器的质量,又 可使装管成品率大大提高,节省时间和管壳, 提高经济效益。同时也为激光器的设计和研 制者提供有参考价值的,或者说有一定指导 意义的比较全面的质量评价信息,有利于发 现工艺中存在的问题,采取相应的措施,不断 提高工艺水平,改善激光器的性能。 本工作得到潘慧珍同志的指导和帮助, 和陈启屿同志进行过有益的讨论,汤德余同 志在设计方面给予了帮助。吉林大学杜国同 同志,北京半导体所庄婉如同志,北京有色所 顾承义同志,上海光机所金志良、黄新祥同志 热情提供激光器。在此,作者谨向他们表示 衷心的感谢。

参考文献

- R. A. Linke *et al.*; Optical Fiber Communication Technical Digest, 1984, New Orleans, Louisiana, Paper, WJ7.
- [2] 何梁昌等; 《通信学报》, 1982, 3, No. 4, 88.
- [3] 单振国; «半导体学报», 1983, 4, No. 3, 265.
- [4] 肖宗耀等;《发光与显示》, 1984, 5, No. 1, 78.

= "uhuhuhuhuhu

使激光人卫测距精度达到厘米级的"超短脉冲激光系统"

1985年11月,我所研制的"超短脉冲激光系统" 与上海天文台主镜为 ϕ 600 mm 的激光人卫测距仪。 组合,建成了我国第一台第三代激光人卫测距仪。该 仪器对地面靶的测量精度达 3~5 cm,对激光地球动 力卫星(LAGEOS)的测量表明:该测距仪的测距能 力达 7500 km。测量数据送往美国,经美国数据处理 中心的核对,测距精度已达 5 cm 左右。

激光人卫测距仪转代的重要标志之一是测距精度,第一代测距仪的测距精度是米级,第二代测距仪的测距精度是分米级,第三代测距仪的测距精度是 厘米级。第三代激光人卫测距仪是在第二代测距仪 上使用了"超短脉冲激光系统",使测距精度得到了 大幅度的提高。

所研制的"超短脉冲激光系统"具有"高锁模概 率"、"高稳定性"、"高重复频率"等特点,它是由主振 荡器、选脉冲开关、激光放大器和倍频器组成,可以 工作在多脉冲和单脉冲两种状态,1.06μm激光单 脉冲输出能量可大于100mJ,序列脉冲输出能量可 大于200mJ,倍频效率60%。

目前,国际上最好的测距精度是3~4cm。因此,采用了"超短脉冲激光系统"后,使我国拥有了第 三代激光人卫测距仪,使我国激光人卫测距步入了 世界先进行列,达到了世界先进水平。

(中国科学院上海光机所 何慧娟)

中国光学学会举办激光医学学习班

中国光学学会医用光学专业委员会定于 1986 年5月份举办激光医学学习班。分两期,每期一周 时间。学习班期间将安排到解放军 301 医院、军事 医学科学院、协和医院、医科肿瘤所、同仁医院、安 贞医院、口腔医院、西城中医院轮流讲课,见习参 观激光在临床各科的应用; 简明介绍医用激光器 的原理及使用,并负责安排解答各学科的疑难问 题。

(费 文)

. 290 .